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We investigate both theoretically and experimentally a laser-based controlled tuning of the nonlinear
behaviors of a single mechanical resonator. Thanks to localized three-dimensional modifications induced
by femtosecond-laser irradiation, a Duffing-like oscillator is switched from a hardening resonance to a
linear response and then to a softening resonance and exhibits a wide tunability of the resonant frequency
and a remarkable increase of its linear dynamic range. The principles that underlie laser-tuned nonlinear
oscillators are generic and simple, suggesting its wide applicability not only for micro- or nano-
optomechanical systems but also as a generic framework for characterizing and understanding the physics
of in-volume laser-affected zones.
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I. INTRODUCTION

The nonlinear nature of micro- or nanomechanical oscil-
lators leads to abundant studies of fundamental and applied
sciences [1–5], including macroscopic quantum behaviors,
coherent coupling, and frequency stabilization. An efficient
mechanism to tune the nonlinearity and resonance frequency
holds promise for various applications such as ultrasensitive
sensing [6,7] and signal processing [8,9]. On one hand, as
the size of resonators scales down, the nonlinear dynamics
sets a fundamental limitation on the dynamic range for linear
operation, leading to frequency instability and excessive
noise degrading the performance. On the other hand, it may
lead to unusual phenomena, such as strong modal coupling
and macroscopic quantum behaviors.
Various methods, such as electrostatic [10], thermal [11],

and mechanical [12] tuning, have been implemented to tune
the nonlinear behaviors. However, precise manipulation
or sophisticated control is involved, adding substantial
complexity to the system. Here, we use a nonablative
femtosecond laser to tailor the local properties of materials
in order to tune the nonlinearity and resonance frequency of
a micromechanical oscillator and to increase its dynamic
range beyond the critical amplitude.
In this paper, a theoretical framework is set to show

theoretically the way to tune the nonlinear response of an
oscillator. For the sake of demonstration, we consider a
double-clamped beam excited by a transverse distributed

load. Although this is a particular configuration, the theo-
retical analysis can be adapted and expanded to other types
of nonlinear mechanical oscillators. This technique further
suggests the possibility of broader and reversible tunability.

II. THEORETICAL ANALYSIS

The Duffing equation [13] taking the form ̈zðtÞ þ
2ζ_zðtÞ þ α1zðtÞ þ α3z3ðtÞ ¼ f cosðΩtÞ offers a reasonably
accurate model to capture the nonlinear behaviors of
resonators [14]. In this equation, it is the cubic stiffness
term α3 that determines the nonlinear response: hardening
for α3 > 0, linear response for α3 ¼ 0, and softening for
α3 < 0. Because of the double-clamped configuration,
hardening nonlinearity rapidly manifests as the beam is
driven further out of the plane.
The time-variant displacement yðx; tÞ of a double-

clamped beam is modeled using the Euler-Bernoulli beam
theory [15]. Here, the model is further extended to take into
account an initial beam curviness vðxÞ, which is commonly
observed due to fabrication imperfection. Further demon-
stration will see its great influence on the nonlinear
behaviors when it is comparable to the beam thickness.
Furthermore, we consider both harmonic and static exci-
tations on the beam. The oscillation equation writes

EI
∂4y
∂x4 þ ρA

∂2y
∂t2 − T

�
d2v
dx2

þ ∂2y
∂x2

�
¼ Fdc þ Fac cosðΩtÞ;

ð1Þ
with E the Young’s modulus, I the area moment of inertia, ρ
the density, A the cross-sectional area, Fdc the static
excitation, Fac the harmonic excitation, and Ω the excita-
tion frequency. The total tension term T is a sum of
an initial tension T0 that may be introduced during
fabrication, a bending-induced tension inherent to the
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overconstrained nature of double-clamped beams, and,
finally, a beam-curviness-induced tension like the initial
tension that can be a by-product of the fabrication process.
T is expressed as

T ¼ T0 þ
EA
L

Z
L

0

�
1

2

�∂y
∂x

�
2

þ ∂y
∂x

dv
dx

�
dx; ð2Þ

with L the beam length. Here, we pose vðxÞ ¼ e sinðπx=LÞ,
meaning that the beam is initially bent by a maximum
quantity e.
We approximate the solution yðx; tÞ ¼ uðtÞwðxÞ using

separation of variables near the fundamental resonance.
Under such conditions, the first spatial mode taking the
characteristic displacement at the center point of the
beam can be expressed as wðxÞ ¼ 1 − cosð2πx=LÞ.
The Galerkin approach [16] is then used to arrange
Eq. (1) into a Duffing-like equation describing the
time-variant magnitude uðtÞ,

üðtÞ þ k1uðtÞ þ k2u2ðtÞ þ k3u3ðtÞ ¼ b1 þ b2 cosðΩtÞ;
ð3Þ
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4π4
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4π4
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E
ρ
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with h the beam thickness. uðtÞ is split into a static
amplitude S due to the static term b1 and a harmonic
amplitude zðtÞ due to the harmonic term b2 cosðΩtÞ
and writes uðtÞ ¼ zðtÞ þ S. This treatment leads to the
governing equation for zðtÞ:

̈zðtÞ þ 2ζ_zðtÞ þ α1zðtÞ þ α2z2ðtÞ þ α3z3ðtÞ ¼ b2 cosðΩtÞ:
ð7Þ

Here, α1 ¼ k1 þ 2Sk2 þ 3S2k3, α2 ¼ k2 þ 3Sk3, and
α3 ¼ k3. α2 and α3 are the quadratic and cubic nonlinear
stiffness terms, respectively. The natural frequency ω0 is
given as ω0 ¼ ffiffiffiffiffi

α1
p

. A phenomenological damping term
2ζ_zðtÞ is added to the left-hand side of Eq. (7) to account
for the dissipative terms not taken in Eq. (3).
The bending-induced tension inherent to the double-

clamped configuration contributes to a positive cubic
nonlinear term according to Eq. (6). The initial tension
T0 depending on its sign that can be set positive, null, or
negative can increase or decrease the linear stiffness α1,
suggesting a tunable resonance frequency. The initial beam
curviness vðxÞ, on one hand, introduces a competitive (for
negative T0) or collaborative (for positive T0) factor by

increasing the linear stiffness shown in Eq. (4). On the other
hand, it also introduces a quadratic nonlinear term shown in
Eq. (5). Both α3 and α2 determine the nonlinear response of
the system. The existence of static excitation and the
corresponding static deflection correlate these parameters.
Therefore, T0 and vðxÞ may fully control the dynamic
behaviors.
The method of multiple scales [17] is used to determine a

first approximation solution for Eq. (7),

zðtÞ ¼ aðtÞ cos
�
Ωtþ ϕðtÞ

�
þOðεÞ; ð8Þ

where the amplitude aðtÞ and the phase ϕðtÞ are time
variant, and ε is the bookkeeping parameter in the pertur-
bation analysis. Introducing Eq. (8) into Eq. (7), the
amplitude of a steady-state motion is determined by

ζ2 þ
��

Ω − ω0

�
− 3

8

α

ω0

a2
�
2

¼ b22
4ω2

0a
2
: ð9Þ

The overall nonlinear term α takes the form α ¼ α3 −
ð10=9Þα22ω−2

0 and determines the nonlinear types. When α3
is positive and dominating, α2 tends to decrease αwhile the
resonance keeps a hardening effect. When α2 is large
enough to change the sign of α to negative, the resonance
switches to softening response. In particular, when
α3 ¼ ð10=9Þα22ω−2

0 , meaning that α2 and α3 cancel each
other, the nonlinear terms have no effect on the response,
and the system behaves like a linear resonator.
To appreciate the main factors in switching resonant

behaviors, we first consider the case of negligible static
excitation, for which an analytical expression for α is
derived:

α¼ 4π4

3
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1
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e
h

�
2
�−1�

:

ð10Þ

Here, two design parameters T0 and e=h affect the sign of α
and, in turn, have direct effects on the nonlinearity. This fact
implies theoretically the possibility of switching resonant
behaviors simply by adjusting these two parameters.
In the case of nonzero static excitation, as is often

encountered in practice, the complete model is evaluated
numerically. There, we consider a fixed Fdc so that the
vibration amplitude does not exceed 2 times h, which
corresponds to the typical experimental values that we
discuss later. Figure 1 shows that both beam curviness and
initial tension can change the sign of α. ω0 increases as the
curviness increases in Fig. 1(b). In Fig. 1(a), it goes through
a local minimum as the axial compression decreases
(here around 0.6). The position of that local minimum is
determined by the direct excitation and the curviness. It is
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important to notice that vðxÞ, T0, and Fdc are inherently
coupled.

III. EXPERIMENTS AND RESULTS

To investigate experimentally this model and the pos-
sibility of fully controlling the resonant behaviors of a
single Duffing-like oscillator, we use a double-clamped
beam manufactured by a process combining femtosecond
laser and chemical etching. The femtosecond laser applied
to transparent materials induces localized modifications in
a well-confined three-dimensional manner due to nonlinear
absorption phenomena [18]. This technique can be used for
fabricating microdevices in particular and tailoring material
properties in general. Here we use localized volume
variations [19] and complex stress states [20] introduced
by laser to vary T0 and vðxÞ in the beam.
The resonator design is depicted in Fig. 2(a). It consists of

a double-clamped beam located below the chip surface and
situated symmetrically between a pair of V-shaped grooves
fabricated by laser irradiation out of a single piece of silica
substrate. The beam is excited using dieletrophoresis force
[21] with details as follows [22]. First, a conductive coating
partially covering the V-shaped groove is used to create two
electrodes, uponwhich an external driving voltage is applied.
Second, a nonuniform electric field arises and induces a
polarized dipolar moment on the dielectric beam. Because
of the field nonuniformity, a net electrostatic force applied
on the dipolar moment introduces an out-of-plane motion
of the beam. In our experiments, a direct bias voltage Vdc is
applied to excite the dipolar moment and to deflect the beam
statically. A sinusoidal voltage Vac cosðΩtÞ is superimposed

onto Vdc to drive the beam into resonance along the out-of-
plane direction. Thedielectrophoresis force is proportional to
½Vdc þ Vac cosðΩtÞ�2. By neglecting higher-order harmonic
components, it is expressed as F ≈ Fdc þ Fac cosðΩtÞ.
A descriptive drawing of the actuation principle is shown
in Fig. 2(b).
Figure 2(c) is a scanning-electron-microscopy (SEM)

image showing the monolithic design of the resonator.
Double-clamped beams of length 8 to 18 mm and cross-
sectional area (width × thickness) 100 × 40 μm2 are fab-
ricated. A laser-displacement sensor is used to characterize
the out-of-plane amplitude measured at the central location
of the oscillating beams. The experiments are carried out
under normal atmospheric pressure and at room temper-
ature. We use a pulse energy of 200 nJ emitted from a
1030-nm laser with pulse duration of 280 fs to irradiate the
central volume of double-clamped beams. Note that
depending on the exposure conditions and pulse durations,
some of the laser-induced material modifications can be
erased by further treatment while maintaining the structural
integrity of the device [23]. The laser scans transversely
across the beam-width direction in a layer-by-layer manner
along the beam-thickness direction defining a modified
cross section. Then, it moves along the beam-length
direction and repeats another cross-sectional scan. The
pitches between the two consecutive lines along the beam-
length and -thickness directions are 5 and 12 μm, respec-
tively. These pitches are chosen such that no overlapping

FIG. 2. (a) Illustration of a monolithic double-clamped reso-
nator (in red) with its driving voltage source. (b) Schematic cross
section of the beam and the V-shaped groove boundaries. Finite-
element simulation is used to calculate the field distribution
indicated by the electric field lines. The oscillation occurs out of
the plane. (c) SEM image of the resonator showing one clamped
end of the beam in a V-shaped groove. Scale bar is 200 μm. (d)
Laser exposure strategy for tuning the nonlinear dynamics. Left
optical microscopic image shows the top surface of the laser-
exposed volume. Right illustration summarizes the exposure
sequences. After testing the dynamic response, a first irradiation
(indicated by 1) is applied to the central volume of the beam over
a certain length. After testing the response again, a second
exposure (indicated by 2) consisting of two identical parts is
conducted next to the first irradiated volume and so on. Exposure
lengths vary depending on the beam lengths.
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FIG. 1. (a) The effects of normalized tension T0=Tbuckling on α
and on normalized ω0. The normalized curviness is set to 0.2. The
normalized tension takes negative sign when it turns into
compression and vice versa. Tbuckling denotes the absolute value
of the critical buckling load. (b) The effects of normalized
curviness e=h on α and on normalized ω0. T0 is set to 0.
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of the laser-affected zones takes place. Following the
laser exposure sequence explained in Fig. 2(d), we can
effectively change the sign of α and vary ω0 of a single
oscillator.
A typical set of resonance curves displaying the intrinsic

hardening nonlinearity before laser exposure is shown in
Fig. 3. As the driving voltage increases, the frequency for
peak amplitude is progressively pulled over to higher values.
Hysteresis occurs as the response follows a steep fall to
lower amplitudes when sweeping up to the peak frequency.
To tune α andω0 and, therefore, to verify the prediction of

the model developed, an 8-mm-long beam is locally tailored
by the same laser. Figure 4(a) shows the initial hardening
nonlinearity before the laser exposure. Figures 4(b)–4(d)
further show the tuned nonlinear dynamics by a step-by-step
laser exposure carried out on the same beam. After the first
exposure, the hardening is “softened” and exhibits a decrease
in resonance frequency. With more volume of the beam
irradiated, the hardening switches to a linear response and
with further irradiation, to softening. In all cases, the beam is
driven at the same oscillation amplitude. The simulation also

shows a transition of α from positive to negative, with an
absolute minimum in the linear regime.
The ability to switch the nonlinear dynamics in Fig. 4 is

due to the effective interaction between the femtosecond
laser and material. The femtosecond laser creates porous
structures [24] in nanogratings [25] inside laser-affected
zones, and, as a consequence, it induces volume expansion
and gives rise to a compressive stress along the beam,
turning the initial tension into compression; that is, the sign
of T0 turns negative. With more laser exposure, the growing
beam curviness due to imbalanced stress states induced on
the top and bottom surfaces of the beam introduces α2
competing with α3. After the first exposure in Fig. 4(b),
laser-induced volume expansion starts to create compres-
sive stress in the beam, while a positive α3 due to midplane
stretching is still dominating, corresponding to hardening
dynamics with a reduced resonance frequency determined
by Eq. (4). After the second exposure in Fig. 4(c), the
hardening nonlinearity happens to be canceled by the
softening effect due to laser-induced curviness vðxÞ show-
ing a linear dynamic response. With further exposure in
Fig. 4(d), α turns negative, shifting the previous linear
response to a softening one.
In addition to exhibiting linear and softening dynamics,

Figs. 4(b)–4(d) all show a change in resonance frequency
after exposure, which can also be understood based on the
model derived earlier. Equation (4) shows that the reso-
nance frequency is linearly proportional to the curviness
vðxÞ, which grows by gradually increasing the irradiated
volume, whereas laser-modified T0 generally contributes to
a decrease in resonance frequency according to ω0 ∝

ffiffiffiffiffi
T0

p
.

During the whole irradiation process, the laser-induced
curviness comes into an overwhelming factor, tuning ω0

upwards. To verify the effective modification, we measure
the beam curviness change due to laser irradiation.
Typically, the center of the 8-mm-long beam bends by
some 30 μm after several exposures, which is comparable
to the beam thickness.
A set of linear response curves after laser exposure with

a comparison to its initial hardening is shown in Fig. 5.

FIG. 3. Hardening nonlinearity of an 18-mm-long double-
clamped beam excited by dielectrophoresis force, with exper-
imental data points comparing with theoretical fitted lines.

(a) (b) (c) (d)

FIG. 4. Tuned dynamics of an 8-mm-long double-clamped-beam resonator by sequential femtosecond-laser exposure. Dots and solid
lines are experimental data and theoretical prediction, respectively. (a) The intrinsic hardening response. (b) The first exposure takes
place on the central 400 μm length. (c) The second exposure of two 400-μm parts is carried out. (d) The third exposure of two 600-μm
parts follows.
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This technique enables us to drive the oscillator beyond its
critical amplitude, increase significantly the linear dynamic
range [26] for linear operation, and enhance the signal-to-
noise ratio and energy-handling capability.
In our analysis, we simplify some additional effects.

The femtosecond laser may introduce a change in the
Young’s modulus of materials [27], for instance, due to
structural porosity [28]. Furthermore, the laser-pulse energy
is well below the ablation threshold for fused silica [29];
however, it can still cause localized ablation near the surfaces
and change slightly the cross-sectional dimensions. These
factors, to some extent, all play a role in tuning the nonlinear
dynamics and cause discrepancies. Nevertheless, the model
we introduce explains and agrees qualitatively with the
tunable resonance and nonlinearity in experiments. A better
match with experimental results requires in situ calibration
and/or refining the model to include second-order effects.

IV. CONCLUSION

In conclusion, we present a theoretical framework and
its experimental validation for tuning the nonlinear
response of a Duffing-like oscillator by exploiting femto-
second-laser-matter interaction. Most remarkable is the
ability to tune the oscillator to display either softening
or hardening or linear resonant behaviors and the capability
to expand its linear dynamic range. Our methodology
combining nonlinear mechanical resonators with femto-
second-laser-matter interaction possesses more potential.
The femtosecond laser depending on the conditions can
produce modifications of opposite properties, for instance,
compressive and tensile stress. Some structural modifica-
tions, for example, the densification regime, can be erased

by subsequent treatments [23]. Therefore, it suggests wide,
rewritable, and reversible tunability and may pave the way
for fundamental studies and applications, like, for instance,
quantum effects in macroscopic resonators [2,30] and
tunable devices. Finally, femtosecond-laser-tuned mechani-
cal resonators can serve as a unique tool to investigate the
complex thermoelastic properties of laser-modified struc-
tures, so far largely unknown, and that can have diverse
morphologies ranging from self-organized nanogratings to
densified zones with varying porosity levels [31], also
including the possible presence of laser-induced polymor-
phic phases [32].
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